HSK-A/E/F/C HSK-T

Drill Jig Bushing

I.D.

Bushings are made in 3 different types for precise drilling, drilling and reaming. Available in increments of 0.1 mm according to size of drill or reamer.

UNDERCUT

Two-way undercut allows bushings to fit flush on top of jig.

O.D.

Highly precise finish based on I.D.

Blended and polished for smooth entry of cutting tool.

HARDNESS

H.R.C60° \sim 64° for long wear free.

MATERIAL

JIS SK-5 or selected steel.

CHAMFERS

Chamfers on Bushings permit easy insertion.

RENEWABLE BUSHING

ROUND Type C

BT CAT AHO HSK-A/E/F/C HSK-T UTS

		Press	fit bushing		Renewa	ble bushing	Headless			
Name		Headless	Headed	Round	Right slip	Left slip	Fixed	liner bushing	Lock screw	Round clamp
Shape)	T							Litter	
Higher acci	uracy	SA	SB	sc	SD	SE	SF			
Standard ac	curacy	A	В	С	D	E	F	G	т	R
Reamin	ng	_	BR	CR	DR	ER	FR			

S…for higher accuracy R…for reaming

Type A Headless Press Fit Bushing Type A

* 1.Bushing with I.D. size smaller than 3.0mm uses 30 degreed chamfered radius (R).

Tolerance	of I.D.

d	0.8 ~ 1.5	1.6 ~ 3.0	3.1 ~ 6.0	6.1 ~ 10.0	10.1 ~ 18.0	18.1 ~ 30.0	30.1 ∼ 50.0	50.1 ~ 55.0
SA (G6)	_	+0.008 +0.002	+0.012 +0.004	+0.014 +0.005	+0.017 +0.006	+0.020 +0.007	+0.025 +0.009	+0.029 +0.010
Α	+0.025 +0.002	+0.025 +0.002	+0.030 +0.004	+0.036 +0.005	+0.043 +0.006	+0.052 +0.007	+0.062 +0.009	+0.074 +0.010

Concentric runout (T.I.R.) of O.D.to I.D.

d	0.8 ~ 1.5	1.6 ~ 18.0	18.1 ~ 50.0	50.1 ~ 55.0
SA	_	0.005 or less	0.008 or less	0.010 or less
Α	0.012 or less	0.012 or less	0.020 or less	0.025 or less

1.Renewable bushing cannot be used together with headless press fit bushing, which can be used only with headless liner bushing (Type G).

2.Bore a hole in bushing plate at H7 for bushing with O.D. (D) p6.Tolerance of hole bored by reamer with O.D. m5 is H7.

I.D.(d) of hole in bushing plate	0.8 ~ 3.0	3.1 ~ 6.0	6.1 ~ 10.0	10.1 ~ 18.0	18.1 ~ 30.0	30.1 ~ 50.0	50.1 ~ 55.0
Tolerance H7	+0.010	+0.012	+0.015	+0.018	+0.021	+0.025	+0.030
	0	0	0	0	0	0	0

UTS Specialized Machine

SA	For higher accuracy
Α	For standard accuracy

d	D (nc)	В	Grade						l																				
a	D (p6)	R	Grade	6	8	10	12	16	20	25	30	35	45	55															
0.8 ~ 1.0	3 +0.012 +0.006	3 +0.012	3 +0.012	3 +0.012	₃ +0.012	※ 1																							
			Α	0	0																								
1.1 ~ 1.5	4 +0.020 +0.012	※ 1																											
	+0.012		A	0	0																								
1.6 ~ 2.0	5 +0.020 +0.012	※ 1	SA		0	0	0																						
			A		0	0	0																						
2.1 ~ 3.0	7 +0.024 +0.015	% 1	SA A		0	0	0																						
			SA			0	0	0																					
3.1 ~ 4.0	8 +0.024 +0.015	1	A																										
	.0.001		SA			0	0	0																					
4.1 ~ 6.0	10 +0.024 +0.015	1	A																										
	+0.029		SA				0	0	0																				
6.1 ~ 8.0	12 +0.029	2	Α				0	0	0																				
	15 +0.029		SA				0	0	0																				
8.1 ~ 10.0	15 +0.029	2	Α				0	0	0																				
10.1 ~ 12.0	18 +0.029	2	SA					0	0	0																			
10.1 10 12.0	+0.018		Α					0	0	0																			
12.1 ~ 15.0	22 +0.035	2	SA					0	0	0																			
1211 1010	+0.022	_	А					0	0	0																			
15.1 ~ 18.0	26 +0.035	2	SA						0	0	0																		
	+0.022		Α						0	0	0																		
18.1 ~ 22.0	30 +0.035 +0.022	3	SA						0	0	0																		
	+0.022		A						0	0	0																		
22.1 ~ 26.0	35 +0.042 +0.026	3	SA							0	0	0																	
		10.042																A							0	0	0		
26.1 ~ 30.0				SA A							0	0	0																
			SA								0	0	0																
30.1 ∼ 35.0	48 +0.042 +0.026	4	A									0	0																
	10.054		SA								0	0	0																
35.1 ~ 42.0	55 +0.051 +0.032	4	A								0	0	0																
	62 +0.051		SA									0	0	0															
42.1 ~ 48.0	62 +0.031	4	Α									0	0	0															
40.4	70 +0.051		SA									0	0	0															
48.1 ~ 55.0	70 +0.051 +0.032	4	А									0	0	0															

Ordering Example

SA - 6.0 × 10

Code

0000 012 060 12 Code d ℓ A:011 SA:012